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Outline

• Context
- verification of safety-critical avionics software (and HW)
- complex, real-time, fault tolerant
- why do we need formal methods?

• Approach
- model checking
- tools

• Examples
- real-time operating system for avionics
- triplex sensor voter

• Conclusions
- What’s in it for me?
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What’s in it for me?

• Depends on who you are…
- avionics manufacturer
- airframer/integrator
- airline
- regulator
- flying public

• …and what you do
- engineer
- QA/test
- DER
- management

• Attempt to answer from a viewpoint of a 
practitioner (rather than a researcher)
- how to apply real tools to real systems for real airplanes
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Formal methods

• analysis is a necessary part of any engineering discipline
• formal methods = specification & analysis of SW designs
• why analyze software?

- imagine building the mechanical components of an aircraft today 
without structural & aerodynamic analyses

“We’ll just build it and see if it flies.”
- all software-related failures are due to design errors

doesn’t break or wear out
testing and HW fault-models inadequate

- software is too easy to change
susceptible to new errors at all life-cycle stages

- software errors are logical errors 
obscured by representation
difficult to detect errors by inspection
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• using ideas and techniques from mathematics and formal logic
• to specify and reason about computing systems 
• to increase design assurance and eliminate defects
• by allowing comprehensive analysis of requirements and design 
• and complete exploration of system behavior
• including fault conditions
• augmented by automated SW tools

What is/are formal methods?
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Test vs. formal analysis

- Inputs 
Requirements + Test cases + 
Executable + Target platform

- Execute
- Outputs  

Test results 
Structural coverage metrics

- Inputs
Requirements + Design + 
Environment 
(assumptions)

- Reachability analysis
- Outputs

Correctness
State space coverage
Fault handling behaviors

initial configuration

test execution trace
error state

reachable state space
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Model checking

• System modeled as automaton (state machine)
• Performs exhaustive state space search with various mechanisms for 

reducing state space
- explicit state model checkers (Spin)
- symbolic model checkers (SMV)

• Properties specified as
- assertions on particular system states 
- path specifications (sequences of states – temporal logic)

• Checks if properties hold in any or all states or sequences of states 
- or that negation of property is not reachable in the model

• Originally developed for hardware and protocol verification
- current research focusing on software verification

• Main advantage: produces counter-examples for aid in debugging
• Main disadvantage: state explosion problem

- this problem is slowly being mitigated by various advanced techniques and 
Moore’s law

• Approaches
- model derived from design specification 
- model derived from implementation / code



8 HL-formal-methods.ppt

Tools: SPIN

• Holzmann (Bell Labs, NASA)
• Input

- Promela – guarded command language
• Analysis features

- LTL, assertions, liveness
- asynchronous processes
- partial order reduction, compression, 

state space approximation
• Output

- results & statistics
- message sequence chart
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Tools: SMV/NuSMV

• Clarke (CMU) and others
• Text interface
• synchronous data flow language
• CTL specs
• counter examples as sequence of states

MODULE main

VAR
state1: {n1, t1, c1};

ASSIGN
init(state1) := n1;
next(state1) := 
case

(state1 = n1) & (state2 = t2): t1;
(state1 = n1) & (state2 = n2): t1;
(state1 = n1) & (state2 = c2): t1;
(state1 = t1) & (state2 = n2): c1;
(state1 = t1) & (state2 = t2) & (turn = 1):  c1;
(state1 = c1): n1;
1: state1;

esac;

VAR
state2: {n2, t2, c2};

<…>

VAR
turn: {1, 2};

ASSIGN
init(turn) := 1;
next(turn) := 
case

(state1 = n1) & (state2 = t2): 2;
(state2 = n2) & (state1 = t1): 1;
1: turn;

esac;

SPEC
EF((state1 = c1) & (state2 = c2))

SPEC
AG((state1 = t1) -> AF (state1 = c1))

SPEC
AG((state2 = t2) -> AF (state2 = c2))
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Tools: SCADE

• Esterel 
Technologies

• Integrated CAD 
and verification

• graphical 
synchronous data 
flow language

• Design Verifier
• Import-export 

Simulink designs
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Example 1:  RTOS

• Integrated Modular Avionics
- applications of different criticalities share resources (CPU)
- reduced cost, weight, maintenance (reduce amount of “level A” 

code)
• Real-time operating system with time partitioning 

- scheduler ensures that actions of one thread cannot impact 
other threads’ guaranteed access to resources

- RT control tasks: every thread gets its allotted CPU budget 
every period

- benefits: fault containment, system upgrades
• Why use formal methods

- concurrency, complexity, real-time guarantees
- high integrity required (level A)

• Goal
- demonstrate effectiveness of model checking to analyze key 

properties of safety-critical software that would be difficult or 
impossible to establish by traditional means

- advanced debugging: augments existing development process

function1

function2

function3

shared resource

function1

function2

function3
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Primus Epic integrated avionics system

Business, regional, 
and commuter 
aircraft

• Bombardier Global 
Express

• Raytheon Hawker 
Horizon 450

• Agusta-Bell AB-139 

• Gulfstream V-SP

• Sino Swearingen 
SJ30-2 

• Cessna Citation 
Sovereign 

• Deos real-time OS 
-Primarily business, regional, commuter aircraft
-Primary flight controls, autopilot, displays, 
navigation...
-Rate monotonic scheduling with priority 
inheritance
-Time & space partitioning, dynamic threads, slack 
scheduling, aperiodic interrupts, mutexes
-Portable to various COTS CPUs
-DO-178B Level A
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Unique aspects of this work

• Software analyzed is an actual IMA RTOS
- Deos – currently in service in several aircraft product lines

• Model derived directly from C++ source code
- analysis results closely linked to real system

• Overhead accounting computations explicitly modeled
- critical to timing guarantees

• Advanced scheduling features
- complicates both implementation and analysis
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Deos components and terminology

• Process – basic entity for resource mgt. (time, memory, mutexes, I/O,…)
• Thread – sequential execution unit (function + period + time budget)
• API – application programmer’s interface, governs & validates interactions with OS
• HAL – HW abstraction layer, interface to CPU
• PAL – platform abstraction layer, interface to timers  and I/O
• Registry – system configuration parameters
• Kernel – scheduler, memory management, etc.

Process 1 Process 2 Process 3

API

Kernel

PALHAL

CPU Platform Hardware

Platform
Registry

Thread Thread Thread Thread Thread ThreadApplication

Deos

Hardware
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Everything you need to know about...

• Rate Monotonic Scheduling
- Always run the highest priority thread that is ready to run
- All threads are periodic and are guaranteed to receive a 

statically specified CPU budget every period
specify the worst case execution time (WCET) for safety critical
threads

- Programmers do not assign priorities to threads 
thread priority is inferred from period
threads with shorter periods have higher priorities

- Thread notifies kernel when it has finished its execution for a 
period

kernel preempts a thread that attempts to execute beyond its CPU
budget

- Deos uses harmonic periods
permits ~100% utilization of CPU time
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RMS – pictorially

• Idle

• Slow

• Medium

• Fast

Thread is executing
Thread is ready for execution but has not yet been activated by scheduler
Thread has been preempted by higher priority thread
Thread has completed for period
Thread completes for period, activate another thread
Thread preempted by higher priority thread
Thread consumes budget without completing for period (TBE)
Thread resumed with propagation of TBE exception

tick tick tick tick tick tick tick
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Structure of model

Process 1 Process 2 Process 3

API

Kernel

PALHAL

CPU Platform Hardware

Platform
Registry

Thread Thread Thread Thread Thread ThreadApplication

Deos

Hardware

Real system

Thread
Thread
Thread PlatformKernel

API

Kernel classes
and methods

API calls

context
switch

interrupts

read/write
timer

invoke kernel methods

Automata to
drive kernel

Translated
kernel code

Model

Environment

System to 
be verified

- Separation of system and 
environment

- System modeled with high 
fidelity, traceability to real 
system

certification
implementation, autocoding

- Environment
abstract, only model 
necessary parts
fault injection
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High fidelity model of software

• Model derived from kernel code (rather than specification)
- Accuracy (design = code)
- Utility in verification/certification
- Level of detail required to capture subtle timing behaviors

• void Scheduler::initializeInterruptEvents()
• {
• interruptEvents = 
• new InterruptEvent*[ numInterrupts ];

• for ( platformInterruptNumber i = 0; 
• i < numInterrupts; i++ )
• {
• interruptEvents[i] = new InterruptEvent( 

i );
• ignorePlatformInterrupt[i] = false;
• }
• }

• inline Scheduler_initializeInterruptEvents()
• {
• InterruptEvent_PTR 
• Scheduler_interruptEvents[InterruptEvent_MAX]; 
•
• byte i = 0;
• do
• :: (i < InterruptEvent_MAX) ->
•

NEW_InterruptEvent(Scheduler_interruptEvents[i]);
• i++;
• :: else -> break;
• od;
• }

Deos scheduler
• 55 files
• 800KB C++ files
• ~15K LOC

SPIN model
• 20 classes
• 120 methods
• >4000 LOC (Promela)

inline Thread_waitForNextInterrupt() {
assert(currentBudget.remainingBudget >= 2*contextSwitchPlusDelta+cacheBonus);
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Time partitioning error trace

Main: 5/20

User1: 21/60

User2: 21/60

5 12

8

12
delete

timer timer

15

8

0 20 40 60

idle

timer

preempt

Idle never ran
User2: 16/21User1 budget 

returned to main 
(normalized to 7/20)

LTL property -- time partitioning
[](startPeriod -> (!endPeriod U idleRun))

Penix, Visser, Engstrom, Larson, Weininger, “Verification of Time 
Partitioning in the DEOS Scheduler Kernel,” ICSE 2000

budget should have been 
returned at end of user1 period
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Time partitioning

• With slack and ISRs, idle thread may never run:  need new 
approach
- Assertion checked in the tick interrupt handler
- Detects the problem after scheduler has over-committed
- Consists of 2 parts –

one for currently running thread
another for threads in all periods ending at this tick

- Disjunction of 3 conditions –
thread is the Idle thread (no deadline)
thread received its full budget (remaining budget = 0)
thread voluntarily completed for period

• No errors found
- Doesn’t hold for ISR threads

can’t guarantee interrupt occurs early enough in period
but interrupts don’t interfere with other threads
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Overhead accounting

• Scheduler must ensure that time spent executing a thread (including 
kernel overhead) does not exceed thread budget
- Timer loaded when thread is dispatched, counts down to 0

response delayed by critical section, e.g. kernel service (LCS)
scheduling actions to pick next thread (SCHED)
read timer, decrement thread budget, load timer for next thread (TimerOff)

- Pre-deduct overhead quantities from thread budget at dispatch 
(“contextSwitchPlusDelta”)

minimum time required to execute a thread that does nothing (USER = 0)
- Implies minimum budget a thread must have to be placed on runnable queue 

ISR thread must have 2x this amount since it compensates interrupted thread for both context 
switches
more complicated for slack-consuming threads

CTXin USER LCS SCHED TimerOff

start charging
CPU time

(load timer)

stop charging
CPU time

(read timer)

timer
interrupt

(timer = 0)

timer interrupt
serviced

(timer < 0)

timer setting

thread budget
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Scheduler operations & overhead

Thread
Thread
Thread PlatformKernel

API

Kernel classes
and methods

API calls

context
switch

interrupts

read/write
timer

invoke kernel methods

Traps (SW interrupts)
Triggered when user thread 
attempts to execute kernel 
service
Services may include critical 
sections (interrupts disabled)
charge time to calling thread

- System tick interrupt
Generated periodically by 
platform hardware
Tick handler may cause 
currently running thread to be 
preempted 
compensate running thread 
from total CPU utilization

- Timer interrupt
Generated by platform 
hardware
Produced when thread timer 
runs down to zero 
charge to thread

- User interrupts
Generated asynchronously by 
I/O or other hardware
May cause currently running 
thread to be preempted by ISR 
thread 
ISR compensates interrupted 
thread
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Precondition for SOPEvent::makeThreadWait()

Main Scheduler Timer

resume Timer = 13

timer 
interrupt

CPUallowanceExceeded

Timer = 0CFP

Pre-condition 
fails!

makeThreadWait

slack 
consumer

Available 
slack = 2

Start timer with 
2 – 2*CSPD

• makeThreadWait() precondition:
remaining budget ≥
contextSwitchPlusDelta

- available slack = 2
- main thread uses budget and 

requests slack
- 2*contestSwitchPlusDelta pre-

deducted from available slack, 
leaving 0

- main decides to immediately 
complete for period

- when adding main to 
startOfPeriodEvent queue the 
precondition is violated

Action:
• when makeThreadWait() is called, the time 
remaining for the thread has not yet been 
compensated to add contextSwitchPlusDelta
• precondition changed to: remainingBudget ≥ 0
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Example 1: summary

- Verified the main time partitioning assertion and function 
preconditions for many different system configurations, including 
interrupt threads and slack scheduling

Increased assurance that this complex system has been designed and 
implemented correctly

- Identified several instances where preconditions were inconsistent 
with the intended operation of the scheduler

These have been corrected and will improve the quality of code reviews 
performed in future verification and certification activities

- Identified a number of modeling errors
Enabled us to refine the model to reflect realistic system behaviors and 
increased confidence in our analysis results

- Detected several unexpected system behaviors
Improves our understanding of the operation of the system – helpful for 
maintenance and system upgrades  



25 HL-formal-methods.ppt

• Problem
- Algorithm for management of redundant sensors (3)

air data, inertial reference, etc.
- Design captured in Simulink
- Mixture of algorithmic features from several designs

• Why use formal methods 
- Fault handling behavior
- High integrity required (level A)
- Leverage Model-Based Development:  

Flight SW can be autocoded from design
• Objectives

- Comprehensive assessment of design correctness
- Assess automation of translation/verification process
- Tool evaluation (SMV, SAL, SCADE)

control

actuatorsvoter

sensorsensorsensor

Example 2: Triplex sensor voter
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Input signals (3)

Inputs valid (3)

Output signal

Output valid

Persistence 
threshold counter

Averaging

Filter 
differences

- Digitized sensor signals sampled at 20 Hz
- Valid flag supplied by sensor hardware
- Use valid flag and comparison of redundant measurements to detect and isolate 

sensor faults
- Tolerate “false alarms” due to noise, transients, small differences
- Output – composite robust sensor output and valid flag

Sensor voter operation



27 HL-formal-methods.ppt

Persistence threshold counter
• Find the “hidden” state machine...

Δ = sample time
Tp = persistence threshold
N = Tp/Δ = # of steps to persistence threshold

0 2ΔΔ (N-1)Δ

Tp=NΔ

Persistent
Miscompare

Over thresh Over thresh Over thresh

Over thresh

Under threshUnder threshUnder thresh

2NΔ (N+1)Δ

Under thresh

Over thresh

Over thresh Over thresh

Under thresh

Under thresh

Under thresh
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voter
inputSignal

inputValid
data

outputSignal

outputValid
World

Sensor

Sensor

Sensor

andGateVector

out
in1

in2

MODULE andGateVector(in1, in2)
VAR
out : array 0 .. 2 of boolean;

ASSIGN
out[0] := in1[0] & in2[0];
out[1] := in1[1] & in2[1];
out[2] := in1[2] & in2[2];

Voter model

• Voter model
- capture behavior of sensor voter algorithm

• Sensor model (environment)
- measure ‘true’ world data and provide signals to voter
- fault injection – valid flags, noise, signal errors

• Output signal requirements
- synthesize correct output signal
- limit transients in output signal

• Fault handling requirements
- detect sensor faults and isolate faulty sensor 
- must not produce false alarms due to transient conditions
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Environment model

Environment System To Verify

voter
inputSignal

inputValid
data

outputSignal

outputValid
World

Sensor

Sensor

Sensor

non-deterministically 
generates input data 
for sensors

fault injection

enforce single fault 
hypothesis

NOTE:
Environment must permit all 
interesting operational behaviors, 
but prohibit all unrealistic behaviors

specifications
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0 valid sensors
Output not valid

1 valid sensor
Output valid

2 valid sensors
Miscompare,

Output not valid

2 valid sensors
No miscompare,

Output valid

3 valid sensors
Output valid

Valid sensors have 
persistent miscompare.  
(Both are still valid)

Two pairs of valid sensors 
have persistent miscompare. 
Eliminate common sensor.

1 valid sensor goes 
(hardware) invalid

Valid sensor goes 
(hardware) invalid

1 valid sensor goes 
(hardware) invalid

1 valid sensor goes 
(hardware) invalid

Persistent 
miscompare 
clears

init

SPEC
AG((sensorVoter.numValid=3)^(~sensor1.valid)->

AF(sensorVoter.numValid=2))

Fault-handling requirements
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Computational requirements 

• Does computed output agree with the true environmental input 
data?
- within some signal tolerance
- within some time bounds for transients

• Transient may occur at time of sensor faults
- requirements more strict for first fault

time

first 
error  

second 
error

Output error magnitude
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Example 2: summary

• Precise definition of voter requirements
• Verified computational requirements
• Verified fault handling requirements
• Assessment of 3 model checking tools
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Back to “What’s in it for me?”

• Why should we support use of formal methods?
- software engineering best practices

strengthens “analysis” activities, quantitative assessment of design
get it right the first time

- current processes/guidelines not adequate for complex systems
- industry will use if there is a cost advantage 

reduced design errors
early detection of errors
improve process predictability
facilitates reuse
automation of manual reviews
alternative to unit test

- certification authorities should be prepared
proposed changes in DO-178C

DO-178B guidelines
• Quality control – identify and eliminate 

design faults 
Formal analyses and proofs = “other means” 
allowed in Section 6.2 to satisfy verification 
process objectives in the case of complex 
behaviors that are not amenable to testing

• Quality assurance – identify implementation 
errors
Use formal techniques and tools to perform 
the reviews and analyses of Section 6.3.2, 
identifying and verifying requirements for 
functions and components as well as 
assumptions regarding their environment
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Formal methods forecast

• Short term – What can we do now?
- practical engineering tool

advanced debugging tools for early defect detection/elimination 
- augment current processes to increase assurance  
- early design verification

provides a framework for accurate implementation 
- some domain specific tools and automation 

SCADE, extensions to Simulink

• Long term – Where do we want to be? 
- model-based development
- fully integrated into development process
- invisible?
- certification credit for formal analysis

alternative to unit testing in some cases
analysis of design, distinct from implementation
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